GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES PART II

ALEXANDER TSYMBALIUK

ABSTRACT. Identifying the sum of (equivariant) homology groups of $(\mathbb{C}^2)^{[n]}$ with the Fock space, we interpret geometrically some important elements of the Fock space. As a corollary, we prove an existence of Jack polynomials.

1. Recollection

In today's lecture we use the following notation: $\circ X = \mathbb{C}^2.$

◦ $s: X^{[n]} \to \operatorname{Sym}^n X$ is the Hilbert-Chow map. ◦ $T = \mathbb{C}^* \times \mathbb{C}^*$ is the two-dimensional torus acting on X and, therefore, on $X^{[n]}$ and $\operatorname{Sym}^n X$. $\circ \xi_{\lambda} \in X^{[n]}$ denotes the *T*-fixed point parametrized by the Young diagram λ .

• λ^* denotes the conjugate of the Young diagram λ .

• \mathcal{H} denotes the Heisenberg algebra. • $M := \bigoplus H_*(X^{[n]}), \ M^T := \bigoplus H^{T,BM}_*(X^{[n]}), \ M^T_{\text{loc}} := \bigoplus H^{T,BM}_*(X^{[n]})_{\text{loc}}.$ • $R := H^*_T(\text{pt}) = \mathbb{C}[\epsilon_1, \epsilon_2], \ \mathbb{F} := \text{Frac}(R) = \mathbb{C}(\epsilon_1, \epsilon_2), \text{ where } \epsilon_1, \epsilon_2 \text{ form a natural basis of Lie } T,$ corresponding to the one-dimensional subtori $\{(t, 1)\}$ and $\{(1, t)\}$, respectively.

Last time we constructed an action of $\mathcal H$ on M by using the Grojnowski-Nakajima correspondences $Z_{\alpha}[i]$ and $Z_{\beta}[j]$. We also proved that M is isomorphic to a Fock module over \mathcal{H} . In other words, there exists an isomorphism of H-modules

$$\theta: \mathbb{C}[z_1, z_2, \ldots] \xrightarrow{\sim} M,$$

where $\mathbb{C}[z_1, z_2, \ldots]$ is a level 1 Fock module over \mathcal{H} , and $\theta(1) = 1$ -the generator of $H_0(X^{[0]})$. This isomorphism depends on the nonzero class $\beta \in H_0(X) \simeq \mathbb{C}[\text{pt}]$, namely:

$$\theta(z_{i_1}z_{i_2}\cdots z_{i_N}) = Z_\beta[-i_1]Z_\beta[-i_2]\cdots Z_\beta[-i_N](\mathbf{1}) \quad \forall \ i_1 \ge i_2 \ge \cdots \ge i_N$$

We also proved that the same correspondences define an action of \mathcal{H} on M^T and M_{loc}^T . According to the localization theorem:

$$M_{\mathrm{loc}}^T \simeq \bigoplus_{\lambda} \mathbb{F} \cdot [\xi_{\lambda}].$$

Since $\mathbf{1} \in H_0^{T,BM}(X^{[0]})$ is annihilated by $\{Z_{\alpha}[i]\}_{i>0}$ and M_{loc}^T has the same q-dimension as the Fock module, we actually get an isomorphism of H-modules

$$\theta^T : \mathbb{F}[z_1, z_2, \ldots] \xrightarrow{\sim} M_{\text{loc}}^T,$$

defined in the same way as θ for any nonzero class $\beta \in H^{T,BM}_*(X)$.

Remark 1.1. (a) The Poincaré dual of [x - axis] and [y - axis] are actually $\epsilon_2 \cdot 1$ and $\epsilon_1 \cdot 1$. (b) Note that $H^T_*(X) \simeq H^T_T(\text{pt}) \cdot [0]$, $H^{T,BM}_*(X) \simeq H^T_T(\text{pt}) \cdot [X]$, since $\mathbb{C}^2 \times_T ET \to BT$ is a vector bundle. Also $H^T_*(X)_{\text{loc}} \simeq \mathbb{F} \cdot [0]$, $H^{T,BM}_*(X)_{\text{loc}} \simeq \mathbb{F} \cdot [X]$ by the localization theorem. Therefore, the choice of α, β is unique up to proportionality.

ALEXANDER TSYMBALIUK

2. Symmetric functions

2.1. Ring Λ .

Fix $N \in \mathbb{N}$ and let Λ_N be the ring of symmetric functions in N variables x_1, \ldots, x_N , that is,

$$\Lambda_N := \mathbb{Z}[x_1, \dots, x_N]^{S_N}$$

This ring is naturally graded by the degree of polynomials:

$$\Lambda_N = \bigoplus_{n \ge 0} \Lambda_N^n.$$

For any K > N, there is a homomorphism

 $\mathbb{Z}[x_1,\ldots,x_K] \to \mathbb{Z}[x_1,\ldots,x_N]$ given by $x_1 \mapsto x_1,\ldots,x_N \mapsto x_N, x_{N+1} \mapsto 0,\ldots,x_K \mapsto 0$. It induces the homomorphism of graded rings

$$\rho_{K,N}: \Lambda_K \to \Lambda_N$$

Let us point out that for any $K > N \ge n$, the degree n component of $\rho_{K,N}$ is actually an isomorphism

$$\rho_{K,N}^n : \Lambda_K^n \xrightarrow{\sim} \Lambda_N^n$$

Therefore, we can define the ring of symmetric functions in infinitely many variables as

$$\Lambda := \bigoplus_{n \ge 0} \Lambda^n \text{ with } \Lambda^n := \varprojlim_{\leftarrow} \Lambda^n_N.$$

Finally, we define $\Lambda_R := \Lambda \otimes_{\mathbb{Z}} R$ for any ring R.

2.2. Two bases for $\Lambda_{\mathbb{Q}}$.

Recall the two families of symmetric functions:

• Monomial symmetric functions m_{λ} . Fix a Young diagram λ . For $N \ge l(\lambda) = \lambda_1^*$, define $m_{\lambda} \in \Lambda_N^{|\lambda|}$ by $m_{\lambda}(x_1, \dots, x_N) := \frac{1}{\#\{\sigma \in S_N : \sigma(\lambda) = \lambda\}} \sum_{\sigma \in S_N} x_1^{\lambda_{\sigma(1)}} \cdots x_N^{\lambda_{\sigma(N)}}.$

For any $K > N \ge l(\lambda)$, we have

$$\rho_{K,N}^{|\lambda|}(m_{\lambda}(x_1,\ldots,x_K)) = m_{\lambda}(x_1,\ldots,x_N).$$

Thus, the sequence $\{m_{\lambda}(x_1, \ldots, x_N)\}_{N \ge l(\lambda)}$ defines an element of Λ , which we denote by m_{λ} . It is well known that $\{m_{\lambda}\}_{\lambda}$ is a basis for Λ , and hence also for $\Lambda_{\mathbb{Q}}$.

Power symmetric functions p_λ.
Let us consider the n-th power sums

$$p_n := m_{(n)} = \sum x_i^n \in \Lambda.$$

We define $p_{\lambda} \in \Lambda$ by

$$p_{\lambda} := p_{\lambda_1} p_{\lambda_2} \cdots$$

It is well known that $\{p_{\lambda}\}_{\lambda}$ is a basis for $\Lambda_{\mathbb{Q}}$ (but not for Λ). Identifying $\Lambda_{\mathbb{Q}} \xrightarrow{\sim} \mathbb{Q}[p_1, p_2, \ldots]$, we will view the isomorphism θ^T as

 $(\star) \qquad \qquad \theta^T : \Lambda_{\mathbb{F}} \xrightarrow{\sim} M_{\text{loc}}^T.$

3. Geometric realization of m_{λ}

In this section we describe geometrically the images of $m_{\lambda} \in \Lambda_{\mathbb{F}}$ under the isomorphism (\star) .

3.1. Subvarieties $L^{\lambda}\Sigma$.

Let $\Sigma \subset X$ denote the x-axis, i.e., $\Sigma = \{(*, 0)\} \subset \mathbb{C}^2$.

Definition 3.1. Define $L^*\Sigma \subset \bigsqcup_n X^{[n]}$ as the locus, corresponding to those ideals $I \subset \mathbb{C}[x, y]$ such that $\operatorname{supp}(\mathbb{C}[x, y]/I) \subset \Sigma$.

In other words, $L^*\Sigma = \bigsqcup_n s^{-1}(\operatorname{Sym}^n \Sigma)$. Note that $\operatorname{Sym}^n \Sigma$ has a natural stratification

$$\operatorname{Sym}^{n} \Sigma = \bigsqcup_{\lambda \vdash n} S_{\lambda}^{n} \Sigma, \ S_{\lambda}^{n} \Sigma := \left\{ \sum \lambda_{i} [x_{i}] \in \operatorname{Sym}^{n} \Sigma \mid x_{i} \neq x_{j} \text{ for } i \neq j \right\}.$$

Exercise 3.1. Show that $s^{-1}(S^n_{\lambda}\Sigma)$ are locally closed n-dimensional irreducible subvarieties of $L^n\Sigma := L^*\Sigma \cap X^{[n]}$.

Moreover, their closures

$$L^{\lambda}\Sigma := \overline{s^{-1}(S^n_{\lambda}\Sigma)}$$

are irreducible components of $L^*\Sigma$. Next, we provide alternative definitions of $L^{\lambda}\Sigma$.

3.2. $L^{\lambda}\Sigma$ via a \mathbb{C}^* -action.

Let us consider a one dimensional subtorus $T' \subset T$ given by $T' = \{(1,t)\}$. Then we have:

Proposition 3.2. For a point $\xi \in X^{[n]}$, there exists a limit $\lim_{t\to\infty} (1,t) \cdot \xi$ iff $\xi \in L^n \Sigma$.

Proof. Follows from the properness of s and an analogous result for $\text{Sym}^n X$.

For a Young diagram λ and $z_0 \in \Sigma$, let $I_{\lambda,z_0} \subset \mathbb{C}[x,y]$ be the ideal parametrized by λ and such that $\operatorname{supp}(\mathbb{C}[x,y]/I_{\lambda,z_0}) = \{(z_0,0)\}$, that is,

$$I_{\lambda,z_0} := (y^{\lambda_1}, (x - z_0)y^{\lambda_2}, \dots, (x - z_0)^{\lambda_1^*}).$$

The following is obvious:

Proposition 3.3. [N1, Proposition 7.4] If a codimension n ideal $I \subset \mathbb{C}[x, y]$ defines a T'-fixed point of $X^{[n]}$, then it can be uniquely expressed as $I = I_{\lambda^1, z_1} \cap \cdots \cap I_{\lambda^r, z_r}$ for r distinct points $z_1, \ldots, z_r \in \Sigma$ and a collection of Young diagrams $\{\lambda^i\}$ such that $\sum_{i=1}^{r} |\lambda^i| = n$. Conversely, any such intersection $I_{\lambda^1, z_1} \cap \cdots \cap I_{\lambda^r, z_r}$ defines a T'-fixed point of $X^{[n]}$.

For a collection $\{\lambda^1, \ldots, \lambda^r\}$ of r Young diagrams we associate a single Young diagram λ , defined by $\lambda = \lambda^1 \cup \ldots \cup \lambda^r$. In other words, if $\lambda^j = (1^{n_1^j} 2^{n_2^j} \ldots)$, then $\lambda = (1^{n_1^1 + \ldots + n_1^r} 2^{n_2^1 + \ldots + n_2^r} \ldots)$.

Exercise 3.4. Verify that $I_{\lambda^1, z_1} \cap I_{\lambda^2, z_2} \to I_{\lambda^1 \cup \lambda^2, z_1}$ as $z_2 \to z_1$.

For a Young diagram $\lambda = (1^{n_1}2^{n_2}...)$, we define $S^{\lambda}\Sigma$ as the locus of $(X^{[n]})^{T'}$ such that the associated collection $\{\lambda^1, \ldots, \lambda^r\}$ satisfies $\lambda = \lambda^1 \cup \ldots \cup \lambda^r$. Together with Exercise 3.4, we get:

Proposition 3.5. (a) $S^{\lambda}\Sigma = S^{n_1}\Sigma \times S^{n_2}\Sigma \times \dots$

(b) The irreducible components of $(X^{[n]})^{T'}$ are exactly $\{S^{\lambda}\Sigma\}_{\lambda \vdash n}$.

(c) Each $S^{\lambda}\Sigma$ has an open stratum $S_0^{\lambda}\Sigma$ corresponding to $\lambda^1, \ldots, \lambda^r$ being 1-column diagrams.

Consider the decomposition $L^n \Sigma = \bigsqcup_{\lambda \vdash n} W_{\lambda}^-, \ W_{\lambda}^- := \{\xi \in L^n \Sigma \mid \lim_{t \to \infty} (1, t) \cdot \xi \in S^{\lambda} \Sigma\}.$

Proposition 3.6. [N3, Proposition 2.17] We have $L^{\lambda}\Sigma = \overline{W_{\lambda}^{-}}$.

Proof. Follows from $S_0^{\lambda} \Sigma \subset s^{-1}(S_{\lambda}^n \Sigma)$ (both $L^{\lambda} \Sigma, \overline{W_{\lambda}^-}$ are irreducible and equidimensional). \Box

ALEXANDER TSYMBALIUK

Proposition 3.7. For any diagram λ , the component $L^{\lambda}\Sigma$ is a Lagrangian subvariety of $X^{[n]}$. *Proof.* Note that the symplectic form ω on $X^{[n]}$ is semi-invariant w.r.t. T'-action: $\psi_t^* \omega = t \cdot \omega$. For any $\xi \in S^{\lambda}\Sigma$, consider a weight decomposition of the tangent space: $T_{\xi}X^{[n]} = \bigoplus_n H_n$. The above condition implies $H_n \perp^{\omega} H_m$ unless n + m = 1. Together with the nondegeneracy of ω , we see that $T_{\xi_{\lambda}}W_{\lambda}^{-} = \bigoplus_{n \leq 0} H_n$ has half dimension. Further, for any $y \in W_{\lambda}^{-}$ close to x and $u, v \in T_y W_{\lambda}^-$, we get $\omega_{ty}(tu, tv) = t \cdot \omega_y(u, v)$. Existence of $\lim_{t \to \infty} t\omega_y(u, v)$ implies $\omega(u, v) = 0$. \Box

For any $m, l \in \mathbb{N}$, consider a one-dimensional subtorus $T_{m,l} := \{(t^{-m}, t^l)\}$ of T. For a fixed n and generic $m, l \in \mathbb{N}$ we have $(X^{[n]})^{T_{m,l}} = (X^{[n]})^T$.¹

Proposition 3.8. (a) For a point $\xi \in X^{[n]}$, there exists a limit $\lim_{t \to \infty} (t^{-m}, t^l) \cdot \xi$ iff $\xi \in L^n \Sigma$. (b) We also have $W_{\lambda}^{-} := \{\xi \in L^n \Sigma \mid \lim_{t \to \infty} (t^{-m}, t^l) \cdot \xi = \xi_{\lambda} \}.$

The proof of part (b) relies on the character formula from the end of last talk:

Proof. (a) Same as in Proposition 3.2.

(b) Both varieties are T-invariant, so it suffices to check the equality in the neighborhood of ξ_{λ} . In such a neighborhood, the contractable locus corresponds to the sum of non-positive weight spaces. However, a T-weight from (†) is either both T' and $T_{m,l}$ positive or non-positive. \square

The benefit of $T_{m,l}$ -action rather than T'-action is that the fixed point locus is discrete.²

3.3. Geometric realization of m_{λ} .

Let N^T be the sum of the Borel-Moore equivariant homology groups of $L^*\Sigma$:

$$N^T := H^{T,BM}_*(L^*\Sigma) = \bigoplus H^{T,BM}_*(L^n\Sigma) = \bigoplus \mathbb{F} \cdot [L^{\lambda}\Sigma].$$

If $\alpha = \epsilon_1$, $\beta = \epsilon_2$ are the Poincaré dual to [y - axis] and [x - axis], then the correspondences $Z_{\alpha}[i]$ and $Z_{\beta}[-i]$ also act on N^T .³ Analogously to (\star), we have an isomorphism $\vartheta^T : \Lambda_{\mathbb{F}} \xrightarrow{\sim} N_{\text{loc}}^T$

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots \mapsto Z_{\beta} [-\lambda_1] Z_{\beta} [-\lambda_2] \cdots \mathbf{1} \quad \forall \ \lambda_1 \ge \lambda_2 \ge \cdots$$

Proposition 3.9. We have $\vartheta^T : m_\lambda \mapsto [L^\lambda \Sigma]$.

Sketch of the proof. This result is a generalization of the corresponding fact in a non-equivariant setting [N1, Theorem 9.14]. However, the latter should be applied to the compactification \mathbb{P}^2 , rather then \mathbb{C}^2 itself, since Σ defines a zero homology class of \mathbb{C}^2 .

To check $\vartheta^T(m_\lambda) = [L^\lambda \Sigma]$, it suffices to prove $Z_{\Sigma}[-i][L^\lambda \Sigma] = \sum_{\mu} a_{\lambda\mu}[L^{\mu}\Sigma]$, where the coefficients $a_{\lambda\mu}$ are determined by the identity $p_i \cdot m_{\lambda} = \sum_{\mu} a_{\lambda\mu} m_{\mu}$ in Λ . It is clear that $a_{\lambda\mu}$ is equal to the number of indexes r such that $\{\lambda_1, \ldots, \lambda_{r-1}, \lambda_r + i, \lambda_{r+1}, \ldots\} = \{\mu_1, \mu_2, \ldots\}$. In order, to determine the coefficient of $[L^{\mu}\Sigma]$ in $Z_{\Sigma}[-i][L^{\lambda}\Sigma]$, we can compute everything

in the neighborhood of an arbitrary point $J_0 \in L^{\mu}\Sigma$. We choose such a point to be of the form $J_0 = I_{\mu_1, z_1} \cap \cdots \cap I_{\mu_l, z_l}$ for pairwise distinct points $z_1, \ldots, z_l \in \Sigma, l := l(\mu)$.

Then $(J_0, J, x) \in \mathbb{Z}[-i] \iff \exists j : x = x_j \text{ and } J = I_{\mu_1, z_1} \cap \cdots \cap I_{\mu_j - i, z_j} \cap \cdots \cap I_{\mu_l, z_l}$. Therefore, the coefficient of $[L^{\mu}\Sigma]$ in $Z_{\Sigma}[-i][L^{\lambda}\Sigma]$ is nonzero iff $a_{\lambda\mu} \neq 0$. In the latter case $a_{\lambda\mu}$ is equal to the number of possible choices of $x \in X$ as above. It remains only to check that each such choice of x contributes 1 to the coefficient. This requires a transversality result (see [N1, p.112]).

¹ A similar argument was already used last time in the proof of $\dim_q M = \prod_{j=1}^{\infty} \frac{1}{1-q^j}$. ² In [N3], Nakajima considers only $T_{1,1}$. However, it is not obvious for us why $(X^{[n]})^{T_{1,1}} = (X^{[n]})^T$.

 $^{^{3}}$ Those classes are nonzero in the equivariant homology, unlike in the non-equivariant setting.

4. Geometric realization of Jack Polynomials

In this section we introduce the important class of symmetric functions called Jack polynomials. Using the isomorphism (\star) , we provide their geometric interpretation. In particular, this yields an alternative proof of their existence. Our exposition follows [LQW, N3].

4.1. Jack polynomials $P_{\lambda}^{(k)}$.

Let k be an independent variable. Consider the inner product $\langle \cdot, \cdot \rangle_k$ on $\Lambda_{\mathbb{Q}(k)}$ defined by

$$\langle p_{\lambda}, p_{\mu} \rangle_k := k^{l(\lambda)} z_{\lambda} \delta^{\mu}_{\lambda},$$

where $z_{\lambda} := \prod l^{n_l} n_l!$ for $\lambda = (1^{n_1} 2^{n_2} \cdots).$

Last time we introduced a complete order \leq and a partial order \leq on Young diagrams.

Theorem 4.1. For each partition λ , there is a unique symmetric polynomial $P_{\lambda}^{(k)}$ satisfying: (i) $P_{\lambda}^{(k)} = m_{\lambda} + \sum_{\mu < \lambda} u_{\lambda,\mu}^{(k)} m_{\mu}$ for some $u_{\lambda,\mu}^{(k)} \in \mathbb{Q}(k)$. (ii) $\langle P_{\lambda}^{(k)}, P_{\mu}^{(k)} \rangle_{k} = 0$ if $\lambda \neq \mu$.

Definition 4.1. Polynomials $P_{\lambda}^{(k)}$ are called the *Jack polynomials*.

Remark 4.1. For k = 1 we recover back the Schur polynomials: $P_{\lambda}^{(1)} = s_{\lambda}$.

The uniqueness of the orthogonal basis $\{P_{\lambda}^{(k)}\}_{\lambda}$ is clear from the Gram-Schmidt orthogonalization process. Namely, there exists a unique basis $\{P_{\lambda}^{(k)}\}$ satisfying condition (ii) and (i') $P_{\lambda}^{(k)} = m_{\lambda} + \sum_{\mu \prec \lambda} u_{\lambda,\mu}^{(k)} m_{\mu}$ for some $u_{\lambda,\mu}^{(k)} \in \mathbb{Q}(k)$. However, it is quite nontrivial to show that $u_{\lambda,\mu}^{(k)} = 0$ unless $\mu < \lambda$ (see [M, Section VI.10]).

Remark 4.2. The original proof is based on the following idea. One can construct a family of pairwise commuting differential operators $\{D_i\}$ acting on Λ , which are self-adjoint w.r.t. $\langle \cdot, \cdot \rangle_k$. It is easy to check that $D_i(m_\lambda)$ is a linear combination of $\{m_\mu\}_{\mu\leq\lambda}$ and $\{D_i\}$ have a simple spectrum. Therefore, their joint eigenvectors (properly normalized) satisfy (i) and (ii).

We also introduce the integral form $J_{\lambda}^{(k)}$ of the Jack polynomials by

$$J_{\lambda}^{(k)} := c_{\lambda}(k)P_{\lambda}^{(k)}, \text{ where } c_{\lambda}(k) := \prod_{\Box \in \lambda} (k \cdot a(\Box) + l(\Box) + 1).$$

Remark 4.3. It turns out that $J_{\lambda}^{(k)}$ is a linear combination of $\{m_{\mu}\}_{\mu \leq \lambda}$ with coefficients in $\mathbb{Z}_{\geq 0}[k]$. Therefore, one can specialize k to any complex number in $J_{\lambda}^{(k)}$, but not in $P_{\lambda}^{(k)}$.

4.2. Geometric realization of $P_{\lambda}^{(k)}$.

In this section we provide a geometric realization of the Jack polynomials. It is worth to mention that this construction has no counterpart in the non-equivariant setting, unlike p_{λ} , m_{λ} . Let us start from the following sequence of isomorphisms:

$$\bigoplus_{\lambda \vdash n} \mathbb{F} \cdot [\xi_{\lambda}] = H^T_*((X^{[n]})^T)_{\mathrm{loc}} \xrightarrow{\sim}_{\iota_*} H^{T,BM}_*(L^n \Sigma)_{\mathrm{loc}} \xrightarrow{\sim}_{j_*} H^{T,BM}_*(X^{[n]})_{\mathrm{loc}},$$

where $j: L^n \Sigma \hookrightarrow X^{[n]}, \ \iota: \bigsqcup_{\lambda \vdash n} \{\xi_\lambda\} \hookrightarrow L^n \Sigma, \ \iota_\lambda : \{\xi_\lambda\} \hookrightarrow X^{[n]}$ are the inclusions. Note that $\{[L^\lambda \Sigma]\}_{\lambda \vdash n}$ is a natural basis of $H^{T,BM}_*(L^n \Sigma)_{\text{loc}}$. Our next goal is to compute $\iota_*^{-1}([L^{\lambda}\Sigma])$ in the fixed point basis $\{[\xi_{\mu}]\}$. By the fixed point formula, we have

(1)
$$\iota_*^{-1}([L^{\lambda}\Sigma]) = \sum_{\mu:\xi_{\mu}\in L^{\lambda}\Sigma} c_{\lambda,\mu}[\xi_{\mu}], \ c_{\lambda,\mu}\in\mathbb{F}.$$

Remark 4.4. If ξ_{μ} is a smooth point of $L^{\lambda}\Sigma$, then $c_{\lambda,\mu} = \frac{1}{e(T_{\xi_{\mu}}L^{\lambda}\Sigma)}$, where $e(T_{\xi_{\lambda}}L^{\lambda}\Sigma)$ denotes the Euler class of the corresponding tangent space.

The following result provides a geometric interpretation of the dominance order on Young diagrams. We postpone its proof until the end of this section.

Proposition 4.2. If $\xi_{\mu} \in L^{\lambda}\Sigma$, then $\mu \leq \lambda$. Moreover, ξ_{λ} is a smooth point of $L^{\lambda}\Sigma$.

Let us now consider the intersection pairing

$$\langle \cdot, \cdot \rangle : H^{T,BM}_*(X^{[n]}) \otimes H^T_*(X^{[n]}) \to H^T_*(\mathrm{pt}), \ u \otimes v \mapsto (-1)^n p_{X^{[n]}*}(u \cap v).$$

This pairing is perfect, due to the Poincaré duality, and yields a perfect pairing⁴

$$\langle \cdot, \cdot \rangle : M_{\text{loc}}^T \otimes M_{\text{loc}}^T \to \mathbb{F}.$$

Moreover, we have:⁵

$$\langle Z_{\alpha}[i]u,v\rangle = \langle u, Z_{\alpha}[-i]v\rangle, \ Z_{f\alpha}[i] = fZ_{\alpha}[i], \ Z_{\alpha}[i]f = fZ_{\alpha}[i], \ f \in H_T^*(\mathrm{pt})$$

The first equality implies

(2)
$$\langle P_{\lambda}[\alpha], P_{\mu}[\beta] \rangle = (-\langle \alpha, \beta \rangle)^{l(\lambda)} z_{\lambda} \delta^{\mu}_{\lambda}, \text{ where } P_{\mu}[\beta] := Z_{\beta}[-\mu_1] Z_{\beta}[-\mu_2] \dots (1).$$

In other words, the isomorphism θ^T intertwines \langle , \rangle_k on the $\Lambda_{\mathbb{F}}$ -side with \langle , \rangle on the M_{loc}^T -side, where $k = -\langle \beta, \beta \rangle$. In particular, for $\beta = \epsilon_2$ we get $k = -\epsilon_2/\epsilon_1$.⁶

Note that the intersection pairing \langle , \rangle_T on $H^T_*((X^{[n]})^T)_{\text{loc}} = \bigoplus_{\lambda \vdash n} \mathbb{F} \cdot [\xi_\lambda]$ is a direct sum of those on $H^T_*(\{\xi_\lambda\})_{\text{loc}}$, that is, $\langle [\xi_\lambda], [\xi_\mu] \rangle_T = \delta^\mu_\lambda$. On the other hand, by the projection formula:

$$\langle \jmath_*\iota_*(A), \jmath_*\iota_*(B) \rangle = \langle A, \iota^* \jmath^* \jmath_*\iota_*B \rangle.$$

Since $\iota_{\lambda}^{*}\iota_{\lambda*}(\bullet) = e(T_{\xi_{\lambda}}X^{[n]}) \cap \bullet$, we get $\langle [\xi_{\lambda}], [\xi_{\mu}] \rangle = (-1)^{n}e(T_{\xi_{\lambda}}X^{[n]}) \cdot \delta_{\lambda}^{\mu}$. Combining this observation with Proposition 4.2 and formulas (1)-(2), we get

Theorem 4.3. Under the isomorphism $\theta^T : \Lambda_{\mathbb{F}} \xrightarrow{\sim} M_{\text{loc}}^T$, we have

$$P_{\lambda}^{(k)} \mapsto \frac{1}{e(T_{\xi_{\lambda}}L^{\lambda}\Sigma)}[\xi_{\lambda}], \ k = -\epsilon_2/\epsilon_1.$$

Remark 4.5. This theorem also proves an existence of the Jack polynomials.

Let us finally provide a formula for $e(T_{\xi_{\lambda}}L^{\lambda}\Sigma)$ (see Appendix for the proof):

Proposition 4.4. The equivariant Euler class of the tangent space to $L^{\lambda}\Sigma$ at ξ_{λ} equals

$$e(T_{\xi_{\lambda}}L^{\lambda}\Sigma) = \prod_{\Box \in \lambda} ((l(\Box) + 1)\epsilon_1 - a(\Box)\epsilon_2) = \epsilon_1^{|\lambda|} \cdot c_{\lambda}(k).$$

Remark 4.6. Note that $\epsilon_1^{-|\lambda|} \cdot [\xi_{\lambda}]$ corresponds to the integral form of the Jack polynomial $J_{\lambda}^{(k)}$.

 $[\]begin{array}{c} \overbrace{}^{4} \operatorname{Since} H^{T,BM}_{*}(X^{[n]})_{\operatorname{loc}} \simeq H^{T,BM}_{*}((X^{[n]})^{T})_{\operatorname{loc}} \simeq \bigoplus_{\lambda \vdash n} \mathbb{F} \cdot [\xi_{\lambda}] \simeq H^{T}_{*}((X^{[n]})^{T})_{\operatorname{loc}} \simeq H^{T}_{*}(X^{[n]})_{\operatorname{loc}}. \\ {}^{5} \operatorname{For the first one we use the projection formula: } \langle Z_{\alpha}[i]u,v \rangle = \Pi_{*}(p_{1}^{*}(v) \cap p_{2}^{*}(u) \cap \pi^{*}(\alpha)) = \langle u, Z_{\alpha}[-i]v \rangle, \\ \operatorname{where} p_{1}, p_{2}, p_{3}, \Pi \text{ are the projections of } Z^{n}[i] \text{ to } X^{[n]}, X^{[n+i]}, X, \text{pt, respectively.} \\ {}^{6} \operatorname{Let} \Sigma' \text{ be the } y\text{-axis. By the fixed point formula: } [\Sigma] = \frac{[\operatorname{pt}]}{\epsilon_{1}}, [\Sigma'] = \frac{[\operatorname{pt}]}{\epsilon_{2}}, [\Sigma] \cap [\Sigma'] = [\operatorname{pt}] \Rightarrow [\Sigma] \cap [\Sigma] = \frac{\epsilon_{2}}{\epsilon_{1}} [\operatorname{pt}]. \end{array}$

4.3. Proof of Proposition 4.2.

The main goal of this section is to provide a geometric interpretation of the dominance order on diagrams. For an ideal $I \in L^n \Sigma$, consider a sequence of vector spaces

$$V_i := (y^i)/(I \cap (y^i)), i \ge 0.$$

Note that dim $V_0 = n$, dim $V_n = 0$. Moreover, we have short exact sequences:

$$0 \to V_i \to V_{i-1} \to U_i \to 0, \ U_i := (y^{i-1})/((y^i) + I \cap (y^{i-1})).$$

Define $\nu_i := \dim U_i$. Then $\sum \nu_i = n - 0 = n$ and it is clear that $\nu_1 \ge \nu_2 \ge \ldots \ge \nu_n \ge 0.7$ Let $V^{\nu} \subset L^n \Sigma$ be the locus of those ideals such that the associated partition equals ν . This yields one more decomposition of $L^n \Sigma$:

$$L^n \Sigma = \bigsqcup_{\nu \vdash n} V^{\nu}.$$

Note that dim $V_i \leq l$ is a closed condition for any integer l. Combining this with the formula dim $V_i = \nu_{i+1} + \nu_{i+2} + \ldots = n - (\nu_1 + \ldots + \nu_i)$, we get

(3)
$$\overline{V^{\nu}} \subset \bigcup_{\nu' \ge \nu} V^{\nu'}$$

Let us now establish the connection between $\{V^{\mu}\}_{\mu\vdash n}$ -stratification of $L^{n}\Sigma$ and $\{L^{\lambda}\Sigma\}_{\lambda\vdash n}$.

Proposition 4.5. [N2, Proposition 4.14] We have $L^{\lambda}\Sigma = \overline{V^{\lambda^*}}$.

Note that the partition ν associated to ξ_{μ} equals $\nu = \mu^*$. We also have $\mu \leq \lambda \iff \mu^* \geq \lambda^*$.⁸ These observations together with Proposition 4.5 and (3) imply Proposition 4.2.

Proof of Proposition 4.5.

According to Proposition 3.6, we can view $L^{\lambda}\Sigma$ as a closure of W_{λ}^{-} . For a generic point $\xi = [I] \in W_{\lambda}^{-}$, we have $\lim_{t \to \infty} (1,t) \cdot I = I_{\lambda_1,z_1} \cap \cdots \cap I_{\lambda_r,z_r}$, where z_1, \ldots, z_r are pairwise distinct points of Σ and $\lambda_1, \ldots, \lambda_n$ are 1-column Young diagrams. It is clear that the partition $\nu = \nu(\lambda_j)$ corresponding to I_{λ_j,z_j} is just $\nu(\lambda_j) = (1^{\lambda_j})$, i.e., $I_{\lambda_j,z_j} \in V^{(1^{\lambda_j})}$.

Since the support $\operatorname{supp}((1,t) \cdot \xi) \subset \Sigma$ is independent of t, we get

$$I = I_1 \cap \cdots \cap I_r$$
 with $\operatorname{supp}(\mathbb{C}[x, y]/I_j) = \{(z_j, 0)\}.$

On the other hand, $V^{(1^{\lambda_j})}$ is an open stratum of $L^{\lambda_j}\Sigma$, due to (3). Therefore $(1,t) \cdot I_j \in V^{(1^{\lambda_j})}$ for "sufficiently large" t. Notice also that $V^{(1^{\lambda_j})}$ is T'-invariant. Therefore

$$I_j \in V^{(1^{\lambda_j})} \Longrightarrow I \in V^{\lambda^*} \Longrightarrow L^{\lambda} \Sigma \subseteq \overline{V^{\lambda^*}}$$

Conversely, given a point $\xi = [I] \in V^{\lambda^*}$ we have $\lim_{t \to \infty} (1, t) \cdot I = \bigoplus (I \cap (y^{i-1})) / (I \cap (y^i)) =: I_{\infty}$. Obviously $I_{\infty} \in S^{\lambda}\Sigma \Longrightarrow I \in W_{\lambda}^{-} \Longrightarrow \overline{V^{\lambda^*}} \subseteq L^{\lambda}\Sigma$. The result follows.

Remark 4.7. During the proof, we saw that $V^{(1^n)}$ is an open stratum of $L^n \Sigma$. Let us point out that $L^{(1^n)}\Sigma$ also has a simple description: $L^{(1^n)}\Sigma \simeq \Sigma^{[n]} \simeq \operatorname{Sym}^n \Sigma$.

⁷ If the images of $\{f_k(x)y^{i-1}\}_{k=1}^l$ are linearly independent in U_i , then the images of $\{f_k(x)y^{i-2}\}_{k=1}^l$ are also linearly independent in U_{i-1} .

⁸ To prove this assume the contrary: there exist λ, μ such that $\mu \leq \lambda$, but $\mu^* \not\geq \lambda^*$. The latter condition implies an existence of r such that $\mu_1^* + \ldots + \mu_j^* \geq \lambda_1^* + \ldots + \lambda_j^*$ for j < r, but $\mu_1^* + \ldots + \mu_r^* < \lambda_1^* + \ldots + \lambda_r^*$. In particular, $\mu_r^* < \lambda_r^*$ and $\mu_{r+1}^* + \mu_{r+2}^* + \ldots > \lambda_{r+1}^* + \lambda_{r+2}^* + \ldots$ The latter inequality can be rewritten as $(\mu_1 - r) + \ldots + (\mu_{\mu_r^*} - r) > (\lambda_1 - r) + \ldots + (\lambda_{\lambda_r^*} - r)$, which contradicts $\mu \leq \lambda$.

ALEXANDER TSYMBALIUK

Appendix A. Character formula and the Euler classes

In this appendix we prove the character formula (\dagger) by realizing the tangent space $T_{\xi_{\lambda}}(\mathbb{C}^2)^{[n]}$ as the middle homology of an explicit complex of *T*-representations. As a corollary of this formula, we deduce Proposition 4.4 as well as the *norm formula* for the Jack polynomials.

A.1. The character formula.

Let $V_n := \mathbb{C}^n$ and identify \mathfrak{gl}_n with $\operatorname{End}(V_n)$. Recall that $(\mathbb{C}^2)^{[n]} = \widetilde{\mathfrak{M}}_n / \operatorname{GL}_n$, where

 $\widetilde{\mathcal{M}}_n = \{ (A, B, i, j) \in \mathfrak{gl}_n \times \mathfrak{gl}_n \times \operatorname{Hom}(\mathbb{C}, V_n) \times \operatorname{Hom}(V_n, \mathbb{C}) \mid [A, B] + ij = 0, \ \mathbb{C}[A, B](\operatorname{Im} i) = V_n \} .$

The action of $G = \operatorname{GL}_n$ on $\widetilde{\mathcal{M}}_n$ is given by $g(A, B, i, j) = (gAg^{-1}, gBg^{-1}, gi, jg^{-1}), g \in G$. We view $\mathfrak{gl}_n \times \mathfrak{gl}_n \times \operatorname{Hom}(\mathbb{C}, V_n) \times \operatorname{Hom}(V_n, \mathbb{C})$ as the cotangent bundle of $\mathfrak{gl}_n \times \operatorname{Hom}(V_n, \mathbb{C})$, while the map $\mu : (A, B, i, j) \mapsto [A, B] + ij \in \mathfrak{gl}_n$ is the moment map for the above *G*-action. We also identify $T_{\operatorname{Id}}G \simeq \mathfrak{gl}_n, T_{\xi_0}\widetilde{\mathcal{M}}_n \simeq \mathfrak{gl}_n \times \mathfrak{gl}_n \times V_n \times V_n^*$ for any point $\xi_0 = (A_0, B_0, i_0, j_0) \in \widetilde{\mathcal{M}}_n$.

The differential of the G-action in the neighborhood of $\xi_0 \in \widetilde{\mathcal{M}}_0$ is given by⁹

$$dm^{\xi_0}:\mathfrak{gl}_n\to\mathfrak{gl}_n\times\mathfrak{gl}_n\times V_n\times V_n^*,\ Z\mapsto ([Z,A_0],[Z,B_0],Zi_0,-j_0Z=0).$$

This map is injective. Indeed, if Z is mapped to zero, then $i_0 \in \text{Ker}(Z)$ and so $\text{Ker}(Z) \neq 0$.

But $\operatorname{Ker}(Z)$ is stable with respect to A, B and hence must be the whole space V_n , i.e., Z = 0. The differential $d\mu_{\xi_0} : \mathfrak{gl}_n \times \mathfrak{gl}_n \times V_n \times V_n^* \to \mathfrak{gl}_n$ of the moment map is given by

 $d\mu_{\xi_0} : (A, B, i, j) \mapsto [A_0, B] + [A, B_0] + i_0 j.$

Identifying $\operatorname{Coker}(d\mu_{\xi_0}) \simeq \operatorname{Im}(d\mu_{\xi_0})^{\perp}$ with respect to the trace form, we get:

 $\begin{aligned} \operatorname{Coker}(d\mu_{\xi_0}) &= \{ C \in \mathfrak{gl}_n \mid \operatorname{tr}(C[A_0, B] + C[A, B_0] + Ci_0 j) = 0 \quad \forall A \in \mathfrak{gl}_n, B \in \mathfrak{gl}_n, j \in V_n^* \} = \\ \{ C \in \mathfrak{gl}_n \mid [C, A_0] = [C, B_0] = 0, Ci_0 = 0 \} = 0, \end{aligned}$

where we used the stability condition in the last equality. Thus, $d\mu_{\xi_0}$ is actually surjective. Hence, we get a complex

(‡) $\operatorname{Hom}(V_n, V_n) \xrightarrow{a} \operatorname{End}(V_n, V_n) \oplus \operatorname{End}(V_n, V_n) \oplus \operatorname{Hom}(V_n, \mathbb{C}) \oplus \operatorname{Hom}(\mathbb{C}, V_n) \xrightarrow{b} \operatorname{Hom}(V_n, V_n),$ where $a := dm^{\xi_0}, \ b := d\mu_{\xi_0}$. The middle homology of it equals

 $\operatorname{Ker}(b)/\operatorname{Im}(a) \simeq T_{\overline{\xi}_0}(\mathbb{C}^2)^{[n]}$, where $\overline{\xi}_0 \in X^{[n]}$ is the image of $\xi_0 \in \widetilde{\mathcal{M}}_n$.

To compute the *T*-character of $T_{\xi_{\lambda}}(\mathbb{C}^2)^{[n]}$, we should view (‡) as a complex of *T*-representations. Recall that $V_n \simeq Q_{\lambda} := \mathbb{C}[x, y]/I_{\lambda}$, where the operators *A*, *B* correspond to the multiplications by *x*, *y*. Hence, the natural *T*-weight decomposition of Q_{λ} corresponds to the *T*-weight decomposition $V_n = \bigoplus_{k,l} V_n(k,l)$ with $\operatorname{Im}(i) \in V_n(0,0)$ and $\operatorname{deg}(A) = (-1,0), \operatorname{deg}(B) = (0,-1)$.

Let us rewrite the above complex by changing the middle term to

$$C_2 := \operatorname{Hom}(V_n, V_n \otimes Q) \oplus \operatorname{Hom}(\mathbb{C}, V_n) \oplus \operatorname{Hom}(V_n, \mathbb{C} \otimes \wedge^2 Q)$$

the rightmost term to $C_1 := \text{Hom}(V_n, V_n) \otimes \wedge^2 Q$, the leftmost term to $C_3 := \text{Hom}(V_n, V_n)$, where Q is the 2-dimensional T-module and the maps $C_3 \to C_2 \to C_1$ are the same.

This yields the complex of T-representations

$$0 \to C_3 \to C_2 \to C_1 \to 0.$$

Identifying the tangent space $T_{\xi_{\lambda}}(\mathbb{C}^2)^{[n]}$ with the middle homology of this complex, we get $\operatorname{ch} T_{\xi_{\lambda}}(\mathbb{C}^2)^{[n]} = \operatorname{ch}(C_2) - \operatorname{ch}(C_1) - \operatorname{ch}(C_3) = \operatorname{ch}\left(V_n^* \otimes V_n \otimes (Q - \wedge^2 Q - 1) + V_n + V_n^* \otimes \wedge^2 Q\right).$ Exercise A.1. Derive (†) by using $\operatorname{ch}(Q) = t_1 + t_2$, $\operatorname{ch}(V_n) = \sum_{i=1}^{l(\lambda)} \sum_{j=1}^{\lambda_i} t_1^{1-i} t_2^{1-j}.$

⁹ Recall that the stability condition forces $j_0 = 0$.

A.2. Proof of Proposition 4.4.

It is easy to see that $L^{\lambda}\Sigma$ is a submanifold in a neighborhood of $\{\xi_{\lambda}\}$. Due to Proposition 3.8, the tangent space $T_{\xi_{\lambda}}(L^{\lambda}\Sigma)$ is the direct sum of negative $T_{m,l}$ -weight subspaces of $T_{\xi_{\lambda}}(X^{[n]})$ for generic m, l. Combining this observation with (\dagger) , we get

Corollary A.2. We have ch
$$T_{\xi_{\lambda}}(L^{\lambda}\Sigma) = \sum_{\Box \in \lambda} t_1^{l(\Box)+1} t_2^{-a(\Box)}$$
.

This corollary implies Proposition 4.4.

We conclude this appendix with the following result:

Proposition A.3. The norm of the Jack polynomial is given by

$$\langle P_{\lambda}^{(k)}, P_{\lambda}^{(k)} \rangle_k = \prod_{\Box \in \lambda} \frac{l(\Box) + k \cdot (a(\Box) + 1)}{l(\Box) + 1 + k \cdot a(\Box)}.$$

Proof. According to Theorem 4.3, the isomorphism θ^T intertwines pairing \langle, \rangle_k with \langle, \rangle and

$$\theta^T : P_{\lambda}^{(k)} \to e(T_{\xi_{\lambda}} L^{\lambda} \Sigma)^{-1}[\xi_{\lambda}].$$

Therefore, we get

$$\langle P_{\lambda}^{(k)}, P_{\lambda}^{(k)} \rangle_{k} = \frac{1}{e(T_{\xi_{\lambda}} L^{\lambda} \Sigma)^{2}} \left\langle [\xi_{\lambda}], [\xi_{\lambda}] \right\rangle = (-1)^{|\lambda|} \frac{e(T_{\xi_{\lambda}} X^{[|\lambda|]})}{e(T_{\xi_{\lambda}} L^{\lambda} \Sigma)^{2}}.$$

It remains to use the equality $k = -\epsilon_2/\epsilon_1$, Proposition 4.4 and the formula

$$e(T_{\xi_{\lambda}}X^{[n]}) = \prod_{\square \in \lambda} ((l(\square) + 1)\epsilon_1 - a(\square)\epsilon_2)(-l(\square)\epsilon_1 + (a(\square) + 1)\epsilon_2).$$

References

- [LQW] W. Li, Z. Qin, and W. Wang, The cohomology rings of Hilbert schemes via Jack polynomials, CRM Proc. Lecture Notes, Vol. 38, Amer. Math. Soc., Providence (2004), 249–258; arXiv/0411255.
- [M] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monographs, Oxford Univ. Press (1995), ISBN 0-19-853489-2.
- [N1] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser. 18, Amer. Math. Soc., Providence (1999), ISBN 0-8218-1956-9.
- [N2] H. Nakajima, Jack polynomials and Hilbert schemes of points on surfaces, arXiv/9610021.

[N3] H. Nakajima, More lectures on Hilbert schemes of points on surfaces, arXiv/1401.6782.

DEPARTMENT OF MATHEMATICS, MIT, 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139, USA *E-mail address:* sasha_ts@mit.edu