
GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES

PART II

ALEXANDER TSYMBALIUK

Abstract. Identifying the sum of (equivariant) homology groups of (C2)[n] with the Fock

space, we interpret geometrically some important elements of the Fock space. As a corollary,
we prove an existence of Jack polynomials.

1. Recollection

In today’s lecture we use the following notation:
◦ X = C2.
◦ s : X [n] → SymnX is the Hilbert-Chow map.
◦ T = C∗ × C∗ is the two-dimensional torus acting on X and, therefore, on X [n] and SymnX.
◦ ξλ ∈ X [n] denotes the T -fixed point parametrized by the Young diagram λ.
◦ λ∗ denotes the conjugate of the Young diagram λ.
◦ H denotes the Heisenberg algebra.

◦ M :=
⊕
H∗(X

[n]), MT :=
⊕
HT,BM
∗ (X [n]), MT

loc :=
⊕
HT,BM
∗ (X [n])loc.

◦ R := H∗T (pt) = C[ϵ1, ϵ2], F := Frac(R) = C(ϵ1, ϵ2), where ϵ1, ϵ2 form a natural basis of LieT ,
corresponding to the one-dimensional subtori {(t, 1)} and {(1, t)}, respectively.

Last time we constructed an action of H on M by using the Grojnowski-Nakajima corre-
spondences Zα[i] and Zβ [j]. We also proved that M is isomorphic to a Fock module over H.
In other words, there exists an isomorphism of H-modules

θ : C[z1, z2, . . .]
∼−→M,

where C[z1, z2, . . .] is a level 1 Fock module over H, and θ(1) = 1–the generator of H0(X
[0]).

This isomorphism depends on the nonzero class β ∈ H0(X) ≃ C[pt], namely:

θ(zi1zi2 · · · ziN ) = Zβ [−i1]Zβ [−i2] · · ·Zβ [−iN ](1) ∀ i1 ≥ i2 ≥ · · · ≥ iN .

We also proved that the same correspondences define an action of H on MT and MT
loc.

According to the localization theorem:

MT
loc ≃

⊕
λ

F · [ξλ].

Since 1 ∈ HT,BM
0 (X [0]) is annihilated by {Zα[i]}i>0 and MT

loc has the same q-dimension as the
Fock module, we actually get an isomorphism of H-modules

θT : F[z1, z2, . . .]
∼−→MT

loc,

defined in the same way as θ for any nonzero class β ∈ HT,BM
∗ (X).

Remark 1.1. (a) The Poincaré dual of [x− axis] and [y − axis] are actually ϵ2 · 1 and ϵ1 · 1.
(b) Note that HT

∗ (X) ≃ H∗T (pt) · [0], H
T,BM
∗ (X) ≃ H∗T (pt) · [X], since C2 ×T ET → BT is a

vector bundle. Also HT
∗ (X)loc ≃ F · [0], HT,BM

∗ (X)loc ≃ F · [X] by the localization theorem.
Therefore, the choice of α, β is unique up to proportionality.

1



2 ALEXANDER TSYMBALIUK

2. Symmetric functions

2.1. Ring Λ.
Fix N ∈ N and let ΛN be the ring of symmetric functions in N variables x1, . . . , xN , that is,

ΛN := Z[x1, . . . , xN ]SN .

This ring is naturally graded by the degree of polynomials:

ΛN =
⊕
n≥0

Λn
N .

For any K > N , there is a homomorphism

Z[x1, . . . , xK ] → Z[x1, . . . , xN ] given by x1 7→ x1, . . . , xN 7→ xN , xN+1 7→ 0, . . . , xK 7→ 0.

It induces the homomorphism of graded rings

ρK,N : ΛK → ΛN .

Let us point out that for any K > N ≥ n, the degree n component of ρK,N is actually an
isomorphism

ρnK,N : Λn
K
∼−→Λn

N .

Therefore, we can define the ring of symmetric functions in infinitely many variables as

Λ :=
⊕
n≥0

Λn with Λn := lim
←−

Λn
N .

Finally, we define ΛR := Λ⊗Z R for any ring R.

2.2. Two bases for ΛQ.
Recall the two families of symmetric functions:

• Monomial symmetric functions mλ.

Fix a Young diagram λ. For N ≥ l(λ) = λ∗1, define mλ ∈ Λ
|λ|
N by

mλ(x1, . . . , xN ) :=
1

#{σ ∈ SN : σ(λ) = λ}
∑

σ∈SN

x
λσ(1)

1 · · ·xλσ(N)

N .

For any K > N ≥ l(λ), we have

ρ
|λ|
K,N (mλ(x1, . . . , xK)) = mλ(x1, . . . , xN ).

Thus, the sequence {mλ(x1, . . . , xN )}N≥l(λ) defines an element of Λ, which we denote by mλ.
It is well known that {mλ}λ is a basis for Λ, and hence also for ΛQ.

• Power symmetric functions pλ.
Let us consider the n-th power sums

pn := m(n) =
∑

xni ∈ Λ.

We define pλ ∈ Λ by
pλ := pλ1pλ2 · · · .

It is well known that {pλ}λ is a basis for ΛQ (but not for Λ).

Identifying ΛQ
∼−→Q[p1, p2, . . .], we will view the isomorphism θT as

(⋆) θT : ΛF
∼−→MT

loc.
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3. Geometric realization of mλ

In this section we describe geometrically the images of mλ ∈ ΛF under the isomorphism (⋆).

3.1. Subvarieties LλΣ.
Let Σ ⊂ X denote the x-axis, i.e., Σ = {(∗, 0)} ⊂ C2.

Definition 3.1. Define L∗Σ ⊂
⊔

nX
[n] as the locus, corresponding to those ideals I ⊂ C[x, y]

such that supp(C[x, y]/I) ⊂ Σ.

In other words, L∗Σ =
⊔

n s
−1(Symn Σ). Note that Symn Σ has a natural stratification

Symn Σ =
⊔
λ⊢n

Sn
λΣ, S

n
λΣ :=

{∑
λi[xi] ∈ Symn Σ | xi ̸= xj for i ̸= j

}
.

Exercise 3.1. Show that s−1(Sn
λΣ) are locally closed n-dimensional irreducible subvarieties of

LnΣ := L∗Σ ∩X [n].

Moreover, their closures
LλΣ := s−1(Sn

λΣ)

are irreducible components of L∗Σ. Next, we provide alternative definitions of LλΣ.

3.2. LλΣ via a C∗-action.
Let us consider a one dimensional subtorus T ′ ⊂ T given by T ′ = {(1, t)}. Then we have:

Proposition 3.2. For a point ξ ∈ X [n], there exists a limit lim
t→∞

(1, t) · ξ iff ξ ∈ LnΣ.

Proof. Follows from the properness of s and an analogous result for SymnX. �
For a Young diagram λ and z0 ∈ Σ, let Iλ,z0 ⊂ C[x, y] be the ideal parametrized by λ and

such that supp(C[x, y]/Iλ,z0) = {(z0, 0)}, that is,

Iλ,z0 := (yλ1 , (x− z0)y
λ2 , . . . , (x− z0)

λ∗
1 ).

The following is obvious:

Proposition 3.3. [N1, Proposition 7.4] If a codimension n ideal I ⊂ C[x, y] defines a T ′-fixed
point of X [n], then it can be uniquely expressed as I = Iλ1,z1 ∩ · · · ∩ Iλr,zr for r distinct points
z1, . . . , zr ∈ Σ and a collection of Young diagrams {λi} such that

∑
|λi| = n. Conversely, any

such intersection Iλ1,z1 ∩ · · · ∩ Iλr,zr defines a T ′-fixed point of X [n].

For a collection {λ1, . . . , λr} of r Young diagrams we associate a single Young diagram λ, de-

fined by λ = λ1∪. . .∪λr. In other words, if λj = (1n
j
12n

j
2 . . .), then λ = (1n

1
1+...+nr

12n
1
2+...+nr

2 . . .).

Exercise 3.4. Verify that Iλ1,z1 ∩ Iλ2,z2 → Iλ1∪λ2,z1 as z2 → z1.

For a Young diagram λ = (1n12n2 . . .), we define SλΣ as the locus of (X [n])T
′
such that the

associated collection {λ1, . . . , λr} satisfies λ = λ1∪ . . .∪λr. Together with Exercise 3.4, we get:

Proposition 3.5. (a) SλΣ = Sn1Σ× Sn2Σ× . . . .

(b) The irreducible components of (X [n])T
′
are exactly {SλΣ}λ⊢n.

(c) Each SλΣ has an open stratum Sλ
0Σ corresponding to λ1, . . . , λr being 1-column diagrams.

Consider the decomposition LnΣ =
⊔

λ⊢nW
−
λ , W

−
λ := {ξ ∈ LnΣ | lim

t→∞
(1, t) · ξ ∈ SλΣ}.

Proposition 3.6. [N3, Proposition 2.17] We have LλΣ =W−λ .

Proof. Follows from Sλ
0Σ ⊂ s−1(Sn

λΣ) (both L
λΣ,W−λ are irreducible and equidimensional). �
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Proposition 3.7. For any diagram λ, the component LλΣ is a Lagrangian subvariety of X [n].

Proof. Note that the symplectic form ω on X [n] is semi-invariant w.r.t. T ′-action: ψ∗t ω = t · ω.
For any ξ ∈ SλΣ, consider a weight decomposition of the tangent space: TξX

[n] = ⊕nHn. The
above condition implies Hn ⊥ω Hm unless n+m = 1. Together with the nondegeneracy of ω,
we see that TξλW

−
λ = ⊕n≤0Hn has half dimension. Further, for any y ∈ W−λ close to x and

u, v ∈ TyW
−
λ , we get ωty(tu, tv) = t·ωy(u, v). Existence of lim

t→∞
tωy(u, v) implies ω(u, v) = 0. �

For any m, l ∈ N, consider a one-dimensional subtorus Tm,l := {(t−m, tl)} of T . For a fixed

n and generic m, l ∈ N we have (X [n])Tm,l = (X [n])T .1

Proposition 3.8. (a) For a point ξ ∈ X [n], there exists a limit lim
t→∞

(t−m, tl) · ξ iff ξ ∈ LnΣ.

(b) We also have W−λ := {ξ ∈ LnΣ | lim
t→∞

(t−m, tl) · ξ = ξλ}.

The proof of part (b) relies on the character formula from the end of last talk:

(†) ch Tξλ(X
[n]) =

∑
�∈λ

(
t
l(�)+1
1 t

−a(�)
2 + t

−l(�)
1 t

a(�)+1
2

)
.

Proof. (a) Same as in Proposition 3.2.
(b) Both varieties are T -invariant, so it suffices to check the equality in the neighborhood of ξλ.
In such a neighborhood, the contractable locus corresponds to the sum of non-positive weight
spaces. However, a T -weight from (†) is either both T ′ and Tm,l positive or non-positive. �

The benefit of Tm,l-action rather then T ′-action is that the fixed point locus is discrete.2

3.3. Geometric realization of mλ.
Let NT be the sum of the Borel-Moore equivariant homology groups of L∗Σ:

NT := HT,BM
∗ (L∗Σ) =

⊕
HT,BM
∗ (LnΣ) =

⊕
F · [LλΣ].

If α = ϵ1, β = ϵ2 are the Poincaré dual to [y − axis] and [x − axis], then the correspondences

Zα[i] and Zβ [−i] also act on NT .3 Analogously to (⋆), we have an isomorphism ϑT : ΛF
∼−→NT

loc

pλ = pλ1pλ2 · · · 7→ Zβ [−λ1]Zβ [−λ2] · · ·1 ∀ λ1 ≥ λ2 ≥ · · · .
Proposition 3.9. We have ϑT : mλ 7→ [LλΣ].

Sketch of the proof. This result is a generalization of the corresponding fact in a non-equivariant
setting [N1, Theorem 9.14]. However, the latter should be applied to the compactification P2,
rather then C2 itself, since Σ defines a zero homology class of C2.

To check ϑT (mλ) = [LλΣ], it suffices to prove ZΣ[−i][LλΣ] =
∑

µ aλµ[L
µΣ], where the

coefficients aλµ are determined by the identity pi ·mλ =
∑

µ aλµmµ in Λ. It is clear that aλµ
is equal to the number of indexes r such that {λ1, . . . , λr−1, λr + i, λr+1, . . .} = {µ1, µ2, . . .}.

In order, to determine the coefficient of [LµΣ] in ZΣ[−i][LλΣ], we can compute everything
in the neighborhood of an arbitrary point J0 ∈ LµΣ. We choose such a point to be of the form
J0 = Iµ1,z1 ∩ · · · ∩ Iµl,zl for pairwise distinct points z1, . . . , zl ∈ Σ, l := l(µ).

Then (J0, J, x) ∈ Z[−i] ⇐⇒ ∃ j : x = xj and J = Iµ1,z1∩· · ·∩Iµj−i,zj ∩· · ·∩Iµl,zl . Therefore,

the coefficient of [LµΣ] in ZΣ[−i][LλΣ] is nonzero iff aλµ ̸= 0. In the latter case aλµ is equal to
the number of possible choices of x ∈ X as above. It remains only to check that each such choice
of x contributes 1 to the coefficient. This requires a transversality result (see [N1, p.112]). �

1 A similar argument was already used last time in the proof of dimq M =
∏∞

j=1
1

1−qj
.

2 In [N3], Nakajima considers only T1,1. However, it is not obvious for us why (X[n])T1,1 = (X[n])T .
3 Those classes are nonzero in the equivariant homology, unlike in the non-equivariant setting.
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4. Geometric realization of Jack polynomials

In this section we introduce the important class of symmetric functions called Jack polyno-
mials. Using the isomorphism (⋆), we provide their geometric interpretation. In particular, this
yields an alternative proof of their existence. Our exposition follows [LQW, N3].

4.1. Jack polynomials P
(k)
λ .

Let k be an independent variable. Consider the inner product ⟨·, ·⟩k on ΛQ(k) defined by

⟨pλ, pµ⟩k := kl(λ)zλδ
µ
λ ,

where zλ :=
∏
lnlnl! for λ = (1n12n2 · · · ).

Last time we introduced a complete order ≼ and a partial order ≤ on Young diagrams.

Theorem 4.1. For each partition λ, there is a unique symmetric polynomial P
(k)
λ satisfying:

(i) P
(k)
λ = mλ +

∑
µ<λ u

(k)
λ,µmµ for some u

(k)
λ,µ ∈ Q(k).

(ii) ⟨P (k)
λ , P

(k)
µ ⟩k = 0 if λ ̸= µ.

Definition 4.1. Polynomials P
(k)
λ are called the Jack polynomials.

Remark 4.1. For k = 1 we recover back the Schur polynomials: P
(1)
λ = sλ.

The uniqueness of the orthogonal basis {P (k)
λ }λ is clear from the Gram-Schmidt orthogonal-

ization process. Namely, there exists a unique basis {P (k)
λ } satisfying condition (ii) and

(i′) P
(k)
λ = mλ +

∑
µ≺λ u

(k)
λ,µmµ for some u

(k)
λ,µ ∈ Q(k).

However, it is quite nontrivial to show that u
(k)
λ,µ = 0 unless µ < λ (see [M, Section VI.10]).

Remark 4.2. The original proof is based on the following idea. One can construct a family of
pairwise commuting differential operators {Di} acting on Λ, which are self-adjoint w.r.t. ⟨·, ·⟩k.
It is easy to check that Di(mλ) is a linear combination of {mµ}µ≤λ and {Di} have a simple
spectrum. Therefore, their joint eigenvectors (properly normalized) satisfy (i) and (ii).

We also introduce the integral form J
(k)
λ of the Jack polynomials by

J
(k)
λ := cλ(k)P

(k)
λ , where cλ(k) :=

∏
�∈λ

(k · a(�) + l(�) + 1).

Remark 4.3. It turns out that J
(k)
λ is a linear combination of {mµ}µ≤λ with coefficients in

Z≥0[k]. Therefore, one can specialize k to any complex number in J
(k)
λ , but not in P

(k)
λ .

4.2. Geometric realization of P
(k)
λ .

In this section we provide a geometric realization of the Jack polynomials. It is worth to
mention that this construction has no counterpart in the non-equivariant setting, unlike pλ, mλ.

Let us start from the following sequence of isomorphisms:⊕
λ⊢n

F · [ξλ] = HT
∗ ((X

[n])T )loc
∼−→
ι∗
HT,BM
∗ (LnΣ)loc

∼−→
ȷ∗
HT,BM
∗ (X [n])loc,

where ȷ : LnΣ ↪→ X [n], ι :
⊔

λ⊢n{ξλ} ↪→ LnΣ, ιλ : {ξλ} ↪→ X [n] are the inclusions.

Note that {[LλΣ]}λ⊢n is a natural basis of HT,BM
∗ (LnΣ)loc. Our next goal is to compute

ι−1∗ ([LλΣ]) in the fixed point basis {[ξµ]}. By the fixed point formula, we have

(1) ι−1∗ ([LλΣ]) =
∑

µ:ξµ∈LλΣ

cλ,µ[ξµ], cλ,µ ∈ F.
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Remark 4.4. If ξµ is a smooth point of LλΣ, then cλ,µ = 1
e(TξµLλΣ)

, where e(TξλL
λΣ) denotes

the Euler class of the corresponding tangent space.

The following result provides a geometric interpretation of the dominance order on Young
diagrams. We postpone its proof until the end of this section.

Proposition 4.2. If ξµ ∈ LλΣ, then µ ≤ λ. Moreover, ξλ is a smooth point of LλΣ.

Let us now consider the intersection pairing

⟨·, ·⟩ : HT,BM
∗ (X [n])⊗HT

∗ (X
[n]) → HT

∗ (pt), u⊗ v 7→ (−1)npX[n]∗(u ∩ v).

This pairing is perfect, due to the Poincaré duality, and yields a perfect pairing4

⟨·, ·⟩ :MT
loc ⊗MT

loc → F.

Moreover, we have:5

⟨Zα[i]u, v⟩ = ⟨u,Zα[−i]v⟩, Zfα[i] = fZα[i], Zα[i]f = fZα[i], f ∈ H∗T (pt).

The first equality implies

(2) ⟨Pλ[α], Pµ[β]⟩ = (−⟨α, β⟩)l(λ)zλδµλ , where Pµ[β] := Zβ [−µ1]Zβ [−µ2] . . . (1).

In other words, the isomorphism θT intertwines ⟨, ⟩k on the ΛF-side with ⟨, ⟩ on the MT
loc-side,

where k = −⟨β, β⟩. In particular, for β = ϵ2 we get k = −ϵ2/ϵ1.6
Note that the intersection pairing ⟨, ⟩T on HT

∗ ((X
[n])T )loc =

⊕
λ⊢n F · [ξλ] is a direct sum of

those on HT
∗ ({ξλ})loc, that is, ⟨[ξλ], [ξµ]⟩T = δµλ . On the other hand, by the projection formula:

⟨ȷ∗ι∗(A), ȷ∗ι∗(B)⟩ = ⟨A, ι∗ȷ∗ȷ∗ι∗B⟩.

Since ι∗λιλ∗(•) = e(TξλX
[n]) ∩ •, we get ⟨[ξλ], [ξµ]⟩ = (−1)ne(TξλX

[n]) · δµλ .
Combining this observation with Proposition 4.2 and formulas (1)-(2), we get

Theorem 4.3. Under the isomorphism θT : ΛF
∼−→MT

loc, we have

P
(k)
λ 7→ 1

e(TξλL
λΣ)

[ξλ], k = −ϵ2/ϵ1.

Remark 4.5. This theorem also proves an existence of the Jack polynomials.

Let us finally provide a formula for e(TξλL
λΣ) (see Appendix for the proof):

Proposition 4.4. The equivariant Euler class of the tangent space to LλΣ at ξλ equals

e(TξλL
λΣ) =

∏
�∈λ

((l(�) + 1)ϵ1 − a(�)ϵ2) = ϵ
|λ|
1 · cλ(k).

Remark 4.6. Note that ϵ
−|λ|
1 · [ξλ] corresponds to the integral form of the Jack polynomial J

(k)
λ .

4 Since HT,BM
∗ (X[n])loc ≃ HT,BM

∗ ((X[n])T )loc ≃
⊕

λ⊢n F · [ξλ] ≃ HT
∗ ((X[n])T )loc ≃ HT

∗ (X[n])loc.
5 For the first one we use the projection formula: ⟨Zα[i]u, v⟩ = Π∗(p∗1(v) ∩ p∗2(u) ∩ π∗(α)) = ⟨u,Zα[−i]v⟩,

where p1, p2, p3,Π are the projections of Zn[i] to X[n], X[n+i], X,pt, respectively.
6 Let Σ′ be the y-axis. By the fixed point formula: [Σ] =

[pt]
ϵ1

, [Σ′] = [pt]
ϵ2

, [Σ]∩[Σ′] = [pt] ⇒ [Σ]∩[Σ] = ϵ2
ϵ1

[pt].
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4.3. Proof of Proposition 4.2.
The main goal of this section is to provide a geometric interpretation of the dominance order

on diagrams. For an ideal I ∈ LnΣ, consider a sequence of vector spaces

Vi := (yi)/(I ∩ (yi)), i ≥ 0.

Note that dimV0 = n, dimVn = 0. Moreover, we have short exact sequences:

0 → Vi → Vi−1 → Ui → 0, Ui := (yi−1)/((yi) + I ∩ (yi−1)).

Define νi := dimUi. Then
∑
νi = n− 0 = n and it is clear that ν1 ≥ ν2 ≥ . . . ≥ νn ≥ 0.7

Let V ν ⊂ LnΣ be the locus of those ideals such that the associated partition equals ν. This
yields one more decomposition of LnΣ:

LnΣ =
⊔
ν⊢n

V ν .

Note that dimVi ≤ l is a closed condition for any integer l. Combining this with the formula
dimVi = νi+1 + νi+2 + . . . = n− (ν1 + . . .+ νi), we get

(3) V ν ⊂
∪
ν′≥ν

V ν′
.

Let us now establish the connection between {V µ}µ⊢n-stratification of LnΣ and {LλΣ}λ⊢n.

Proposition 4.5. [N2, Proposition 4.14] We have LλΣ = V λ∗ .

Note that the partition ν associated to ξµ equals ν = µ∗. We also have µ ≤ λ⇐⇒ µ∗ ≥ λ∗.8

These observations together with Proposition 4.5 and (3) imply Proposition 4.2.

Proof of Proposition 4.5.
According to Proposition 3.6, we can view LλΣ as a closure of W−λ . For a generic point

ξ = [I] ∈W−λ , we have lim
t→∞

(1, t) · I = Iλ1,z1 ∩ · · ·∩ Iλr,zr , where z1, . . . , zr are pairwise distinct

points of Σ and λ1, . . . , λn are 1-column Young diagrams. It is clear that the partition ν = ν(λj)

corresponding to Iλj ,zj is just ν(λj) = (1λj ), i.e., Iλj ,zj ∈ V (1λj ).
Since the support supp((1, t) · ξ) ⊂ Σ is independent of t, we get

I = I1 ∩ · · · ∩ Ir with supp(C[x, y]/Ij) = {(zj , 0)}.

On the other hand, V (1λj ) is an open stratum of LλjΣ, due to (3). Therefore (1, t) · Ij ∈ V (1λj )

for “sufficiently large” t. Notice also that V (1λj ) is T ′-invariant. Therefore

Ij ∈ V (1λj ) =⇒ I ∈ V λ∗
=⇒ LλΣ ⊆ V λ∗ .

Conversely, given a point ξ = [I] ∈ V λ∗
we have lim

t→∞
(1, t)·I =

⊕
(I∩(yi−1))/(I∩(yi)) =: I∞.

Obviously I∞ ∈ SλΣ =⇒ I ∈W−λ =⇒ V λ∗ ⊆ LλΣ.
The result follows. �

Remark 4.7. During the proof, we saw that V (1n) is an open stratum of LnΣ. Let us point out
that L(1n)Σ also has a simple description: L(1n)Σ ≃ Σ[n] ≃ Symn Σ.

7 If the images of {fk(x)yi−1}lk=1 are linearly independent in Ui, then the images of {fk(x)yi−2}lk=1 are

also linearly independent in Ui−1.
8 To prove this assume the contrary: there exist λ, µ such that µ ≤ λ, but µ∗ � λ∗. The latter condition

implies an existence of r such that µ∗
1 + . . .+ µ∗

j ≥ λ∗
1 + . . .+ λ∗

j for j < r, but µ∗
1 + . . .+ µ∗

r < λ∗
1 + . . .+ λ∗

r .

In particular, µ∗
r < λ∗

r and µ∗
r+1 + µ∗

r+2 + . . . > λ∗
r+1 + λ∗

r+2 + . . .. The latter inequality can be rewritten as

(µ1 − r) + . . .+ (µµ∗
r
− r) > (λ1 − r) + . . .+ (λλ∗

r
− r), which contradicts µ ≤ λ.
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Appendix A. Character formula and the Euler classes

In this appendix we prove the character formula (†) by realizing the tangent space Tξλ(C2)[n]

as the middle homology of an explicit complex of T -representations. As a corollary of this
formula, we deduce Proposition 4.4 as well as the norm formula for the Jack polynomials.

A.1. The character formula.
Let Vn := Cn and identify gln with End(Vn). Recall that (C2)[n] = M̃n/GLn, where

M̃n = {(A,B, i, j) ∈ gln × gln ×Hom(C, Vn)×Hom(Vn,C) | [A,B] + ij = 0, C[A,B](Im i) = Vn} .

The action of G = GLn on M̃n is given by g(A,B, i, j) = (gAg−1, gBg−1, gi, jg−1), g ∈ G.
We view gln×gln×Hom(C, Vn)×Hom(Vn,C) as the cotangent bundle of gln×Hom(Vn,C),

while the map µ : (A,B, i, j) 7→ [A,B]+ij ∈ gln is the moment map for the above G-action. We

also identify TIdG ≃ gln, Tξ0M̃n ≃ gln×gln×Vn×V ∗n for any point ξ0 = (A0, B0, i0, j0) ∈ M̃n.

The differential of the G-action in the neighborhood of ξ0 ∈ M̃0 is given by9

dmξ0 : gln → gln × gln × Vn × V ∗n , Z 7→ ([Z,A0], [Z,B0], Zi0,−j0Z = 0).

This map is injective. Indeed, if Z is mapped to zero, then i0 ∈ Ker(Z) and so Ker(Z) ̸= 0.
But Ker(Z) is stable with respect to A,B and hence must be the whole space Vn, i.e., Z = 0.

The differential dµξ0 : gln × gln × Vn × V ∗n → gln of the moment map is given by

dµξ0 : (A,B, i, j) 7→ [A0, B] + [A,B0] + i0j.

Identifying Coker(dµξ0) ≃ Im(dµξ0)
⊥ with respect to the trace form, we get:

Coker(dµξ0) = {C ∈ gln | tr(C[A0, B] + C[A,B0] + Ci0j) = 0 ∀A ∈ gln, B ∈ gln, j ∈ V ∗n } =

{C ∈ gln | [C,A0] = [C,B0] = 0, Ci0 = 0} = 0,

where we used the stability condition in the last equality. Thus, dµξ0 is actually surjective.
Hence, we get a complex

(‡) Hom(Vn, Vn)
a
↪→ End(Vn, Vn)⊕ End(Vn, Vn)⊕Hom(Vn,C)⊕Hom(C, Vn)

b� Hom(Vn, Vn),

where a := dmξ0 , b := dµξ0 . The middle homology of it equals

Ker(b)/ Im(a) ≃ Tξ̄0(C
2)[n], where ξ̄0 ∈ X [n] is the image of ξ0 ∈ M̃n.

To compute the T -character of Tξλ(C2)[n], we should view (‡) as a complex of T -representations.
Recall that Vn ≃ Qλ := C[x, y]/Iλ, where the operators A,B correspond to the multiplications
by x, y. Hence, the natural T -weight decomposition of Qλ corresponds to the T -weight decom-
position Vn =

⊕
k,l Vn(k, l) with Im(i) ∈ Vn(0, 0) and deg(A) = (−1, 0), deg(B) = (0,−1).

Let us rewrite the above complex by changing the middle term to

C2 := Hom(Vn, Vn ⊗Q)⊕Hom(C, Vn)⊕Hom(Vn,C⊗ ∧2Q),

the rightmost term to C1 := Hom(Vn, Vn) ⊗ ∧2Q, the leftmost term to C3 := Hom(Vn, Vn),
where Q is the 2-dimensional T -module and the maps C3 → C2 → C1 are the same.

This yields the complex of T -representations

0 → C3 → C2 → C1 → 0.

Identifying the tangent space Tξλ(C2)[n] with the middle homology of this complex, we get

chTξλ(C2)[n] = ch(C2)− ch(C1)− ch(C3) = ch
(
V ∗n ⊗ Vn ⊗ (Q− ∧2Q− 1) + Vn + V ∗n ⊗ ∧2Q

)
.

Exercise A.1. Derive (†) by using ch(Q) = t1 + t2, ch(Vn) =
∑l(λ)

i=1

∑λi

j=1 t
1−i
1 t1−j2 .

9 Recall that the stability condition forces j0 = 0.



GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES II 9

A.2. Proof of Proposition 4.4.
It is easy to see that LλΣ is a submanifold in a neighborhood of {ξλ}. Due to Proposition 3.8,

the tangent space Tξλ(L
λΣ) is the direct sum of negative Tm,l-weight subspaces of Tξλ(X

[n])
for generic m, l. Combining this observation with (†), we get

Corollary A.2. We have ch Tξλ(L
λΣ) =

∑
�∈λ t

l(�)+1
1 t

−a(�)
2 .

This corollary implies Proposition 4.4.

We conclude this appendix with the following result:

Proposition A.3. The norm of the Jack polynomial is given by

⟨P (k)
λ , P

(k)
λ ⟩k =

∏
�∈λ

l(�) + k · (a(�) + 1)

l(�) + 1 + k · a(�)
.

Proof. According to Theorem 4.3, the isomorphism θT intertwines pairing ⟨, ⟩k with ⟨, ⟩ and

θT : P
(k)
λ → e(TξλL

λΣ)−1[ξλ].

Therefore, we get

⟨P (k)
λ , P

(k)
λ ⟩k =

1

e(TξλL
λΣ)2

⟨[ξλ], [ξλ]⟩ = (−1)|λ|
e(TξλX

[|λ|])

e(TξλL
λΣ)2

.

It remains to use the equality k = −ϵ2/ϵ1, Proposition 4.4 and the formula

e(TξλX
[n]) =

∏
�∈λ

((l(�) + 1)ϵ1 − a(�)ϵ2)(−l(�)ϵ1 + (a(�) + 1)ϵ2).

�
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